non-abelian, supersoluble, monomial
Aliases: C92⋊6S3, C9⋊C9⋊3S3, C92⋊7C3⋊2C2, C32⋊C9.8C6, C32⋊C9.18S3, C33.22(C3×S3), C32⋊2D9.7C3, C3.4(He3.4C6), C3.12(He3.4S3), (C3×C9).6(C3×S3), (C3×C9).6(C3⋊S3), C32.43(C3×C3⋊S3), SmallGroup(486,153)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32⋊C9 — C92⋊6S3 |
C1 — C3 — C32 — C33 — C32⋊C9 — C92⋊7C3 — C92⋊6S3 |
C32⋊C9 — C92⋊6S3 |
Generators and relations for C92⋊6S3
G = < a,b,c,d | a9=b9=c3=d2=1, ab=ba, cac-1=ab3, ad=da, cbc-1=a3b, dbd=b-1, dcd=c-1 >
Subgroups: 308 in 63 conjugacy classes, 17 normal (13 characteristic)
C1, C2, C3, C3, S3, C6, C9, C32, C32, D9, C18, C3×S3, C3⋊S3, C3×C9, C3×C9, C3×C9, 3- 1+2, C33, C3×D9, S3×C9, C3×C3⋊S3, C92, C32⋊C9, C9⋊C9, C9⋊C9, C3×3- 1+2, C9×D9, C32⋊C18, C9⋊C18, C32⋊2D9, C92⋊7C3, C92⋊6S3
Quotients: C1, C2, C3, S3, C6, C3×S3, C3⋊S3, C3×C3⋊S3, He3.4S3, He3.4C6, C92⋊6S3
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)
(1 9 8 7 6 5 4 3 2)(10 11 12 13 14 15 16 17 18)
(2 5 8)(3 9 6)(11 17 14)(12 15 18)
(1 16)(2 17)(3 18)(4 10)(5 11)(6 12)(7 13)(8 14)(9 15)
G:=sub<Sym(18)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18), (1,9,8,7,6,5,4,3,2)(10,11,12,13,14,15,16,17,18), (2,5,8)(3,9,6)(11,17,14)(12,15,18), (1,16)(2,17)(3,18)(4,10)(5,11)(6,12)(7,13)(8,14)(9,15)>;
G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18), (1,9,8,7,6,5,4,3,2)(10,11,12,13,14,15,16,17,18), (2,5,8)(3,9,6)(11,17,14)(12,15,18), (1,16)(2,17)(3,18)(4,10)(5,11)(6,12)(7,13)(8,14)(9,15) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18)], [(1,9,8,7,6,5,4,3,2),(10,11,12,13,14,15,16,17,18)], [(2,5,8),(3,9,6),(11,17,14),(12,15,18)], [(1,16),(2,17),(3,18),(4,10),(5,11),(6,12),(7,13),(8,14),(9,15)]])
G:=TransitiveGroup(18,166);
39 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | 6A | 6B | 9A | ··· | 9F | 9G | ··· | 9O | 9P | ··· | 9W | 18A | ··· | 18F |
order | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 6 | 6 | 9 | ··· | 9 | 9 | ··· | 9 | 9 | ··· | 9 | 18 | ··· | 18 |
size | 1 | 27 | 1 | 1 | 2 | 2 | 2 | 18 | 27 | 27 | 3 | ··· | 3 | 6 | ··· | 6 | 18 | ··· | 18 | 27 | ··· | 27 |
39 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 6 | 6 |
type | + | + | + | + | + | + | ||||||
image | C1 | C2 | C3 | C6 | S3 | S3 | S3 | C3×S3 | C3×S3 | He3.4C6 | He3.4S3 | C92⋊6S3 |
kernel | C92⋊6S3 | C92⋊7C3 | C32⋊2D9 | C32⋊C9 | C92 | C32⋊C9 | C9⋊C9 | C3×C9 | C33 | C3 | C3 | C1 |
# reps | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 6 | 2 | 12 | 3 | 6 |
Matrix representation of C92⋊6S3 ►in GL6(𝔽19)
0 | 0 | 1 | 0 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 0 |
0 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 11 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 0 |
0 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 11 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 0 |
0 | 0 | 0 | 0 | 0 | 7 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
G:=sub<GL(6,GF(19))| [0,11,0,0,0,0,0,0,11,0,0,0,1,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,1,0,0],[0,0,1,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,1,0,0],[1,0,0,0,0,0,0,7,0,0,0,0,0,0,11,0,0,0,0,0,0,1,0,0,0,0,0,0,11,0,0,0,0,0,0,7],[0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0] >;
C92⋊6S3 in GAP, Magma, Sage, TeX
C_9^2\rtimes_6S_3
% in TeX
G:=Group("C9^2:6S3");
// GroupNames label
G:=SmallGroup(486,153);
// by ID
G=gap.SmallGroup(486,153);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,979,1190,338,867,873,1383,3244]);
// Polycyclic
G:=Group<a,b,c,d|a^9=b^9=c^3=d^2=1,a*b=b*a,c*a*c^-1=a*b^3,a*d=d*a,c*b*c^-1=a^3*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations